Wednesday, March 28, 2012

Hot on the trail of metabolic diseases and resistance to antibiotics

Hot on the trail of metabolic diseases and resistance to antibiotics [ Back to EurekAlert! ] Public release date: 28-Mar-2012
[ | E-mail | Share Share ]

Contact: Dr. Markus Seeger
m.seeger@bioc.uzh.ch
41-446-355-552
University of Zurich

ABC transporters are membrane proteins that actively pump a wealth of molecules across the membrane. Over 40 different ABC transporters perform vital functions in humans. Genetic defects in ABC transporters can trigger metabolic diseases such as gout, neonatal diabetes or cystic fibrosis, and certain ABC transporters also cause resistance to a wide range of drugs. In tumor cells, increased amounts of ABC transporters that pump chemotherapeutic substances out of the cell are often produced, thus rendering anticancer drugs ineffective. Analogous mechanisms play a key role in many pathogenic bacteria: ABC transporters carry antibiotics out of the cell multi-resistant bacteria are the result.

Despite their major importance in biology and medicine, so far the atomic structure of only a few ABC transporters has been decoded. Now, under the supervision of Markus Seeger and Professor Markus Grtter, PhD student Michael Hohl and senior scientist Christophe Briand have succeeded in cracking the atomic structure of the new ABC transporter "TM287/288".

Illuminating asymmetry

The membrane protein originates from a thermophilic bacterium. Compared to structures already known, "TM287/288" has two different protein chains that assemble into a heterodimer. About half of the 40 human ABC transporters are heterodimers. "The asymmetries discovered enable us to consider the role of ABC transporters in a new light," explains Seeger. "In the longer term, our results could help develop new medication against multi-resistant bacteria or tumors that are difficult to treat. They also make new approaches to curing or alleviating hereditary diseases possible," concludes Grtter.

###

Literature:

Michael Hohl, Christophe Briand, Markus G. Grtter & Markus A. Seeger. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. In: Nature Structural & Molecular Biology, March 28, 2012. Doi: 10.1038/nsmb.2267

Contact:

Dr. Markus Seeger
Department of Biochemistry
University of Zurich
Tel.: 41-44-635-55-52
Email: m.seeger@bioc.uzh.ch

www.bioc.uzh.ch

www.structuralbiology.uzh.ch



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Hot on the trail of metabolic diseases and resistance to antibiotics [ Back to EurekAlert! ] Public release date: 28-Mar-2012
[ | E-mail | Share Share ]

Contact: Dr. Markus Seeger
m.seeger@bioc.uzh.ch
41-446-355-552
University of Zurich

ABC transporters are membrane proteins that actively pump a wealth of molecules across the membrane. Over 40 different ABC transporters perform vital functions in humans. Genetic defects in ABC transporters can trigger metabolic diseases such as gout, neonatal diabetes or cystic fibrosis, and certain ABC transporters also cause resistance to a wide range of drugs. In tumor cells, increased amounts of ABC transporters that pump chemotherapeutic substances out of the cell are often produced, thus rendering anticancer drugs ineffective. Analogous mechanisms play a key role in many pathogenic bacteria: ABC transporters carry antibiotics out of the cell multi-resistant bacteria are the result.

Despite their major importance in biology and medicine, so far the atomic structure of only a few ABC transporters has been decoded. Now, under the supervision of Markus Seeger and Professor Markus Grtter, PhD student Michael Hohl and senior scientist Christophe Briand have succeeded in cracking the atomic structure of the new ABC transporter "TM287/288".

Illuminating asymmetry

The membrane protein originates from a thermophilic bacterium. Compared to structures already known, "TM287/288" has two different protein chains that assemble into a heterodimer. About half of the 40 human ABC transporters are heterodimers. "The asymmetries discovered enable us to consider the role of ABC transporters in a new light," explains Seeger. "In the longer term, our results could help develop new medication against multi-resistant bacteria or tumors that are difficult to treat. They also make new approaches to curing or alleviating hereditary diseases possible," concludes Grtter.

###

Literature:

Michael Hohl, Christophe Briand, Markus G. Grtter & Markus A. Seeger. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. In: Nature Structural & Molecular Biology, March 28, 2012. Doi: 10.1038/nsmb.2267

Contact:

Dr. Markus Seeger
Department of Biochemistry
University of Zurich
Tel.: 41-44-635-55-52
Email: m.seeger@bioc.uzh.ch

www.bioc.uzh.ch

www.structuralbiology.uzh.ch



[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-03/uoz-hot032812.php

craig smith eat to live eat to live ron paul money bomb ron paul money bomb bon vivant zynga ipo

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.