Apr. 19, 2013 ? Smart electronics are taking the world by storm. From techno-textiles to transparent electronic displays, the world of intelligent technology is growing fast and a revolutionary new device has just been added to its ranks. Researchers at the University of Exeter have developed a new photoelectric device that is both flexible and transparent. The device, described in a paper in the journal ACS Nano, converts light into electrical signals by exploiting the unique properties of the recently discovered materials graphene and graphExeter. GraphExeter is the best known room temperature transparent conductor and graphene is the thinnest conductive material.
At just a few atoms thick, the newly developed photoelectric device is ultra-lightweight. This, along with the flexibility of its constituent graphene materials, makes it perfect for incorporating into clothing. Such devices could be used to develop photovoltaic textiles enabling clothes to act as solar panels and charge mobile phones while they are being worn.
Photosensitive materials and devices such as the one developed at Exeter can, in the future, also be used for intelligent windows that are able to harvest electricity and display images while remaining transparent. Smart materials have almost unlimited potential applications from integral iPods and keyboards in clothing to electronic displays on glasses and goggles.
Saverio Russo, Professor of Physics at the University of Exeter said: "This new flexible and transparent photosensitive device uses graphene and graphExeter to convert light into electrical signals with efficiency comparable to that found in opaque devices based on graphene and metals.
"We are only just starting to explore the interfaces between different materials at very small scales and, as this research shows, we are revealing unique properties that we never knew existed. Who knows what surprises are just around the corner."
Metallic nanostructures in smart materials typically cause a haze that prevents them from being truly transparent. The photosensitive device developed at Exeter contains no metals and is therefore completely transparent but, as it can detect light from across the whole visible light spectrum, it is as efficient at sensing light as other recently developed opaque photoelectric devices.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by University of Exeter, via EurekAlert!, a service of AAAS.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Freddie Withers, Thomas Hardisty Bointon, Monica Felicia Craciun, Saverio Russo. All-Graphene Photodetectors. ACS Nano, 2013; : 130418094258009 DOI: 10.1021/nn4005704
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/most_popular/~3/eCtfkj2ncUw/130419121116.htm
Medal Count Sam Mikulak London 2012 diving Tim Berners-Lee Olympics 2012 Schedule Kenneth Branagh Lupe Ontiveros
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.